
ZHOU Fang (Orcid ID: 0000-0001-9107-4969) 
 
 

Seasonal Predictability of Primary East-Asian Summer 

Circulation Patterns by Three Operational Climate Prediction 

Models 

Fang ZHOU1,2, Hong-Li REN2,3, Zeng-Zhen HU4, Ming-Hong LIU2, Jie WU2, and 

Chang-Zheng LIU2 

1Climate Change Research Center, Institute of Atmospheric Physics, and Nansen–Zhu 

International Research Centre, Chinese Academy of Sciences, Beijing 100029, China 

2Laboratory for Climate Studies & CMA-NJU Joint Laboratory for Climate 

Prediction Studies, National Climate Center, China Meteorological Administration, 

Beijing 100081, China 

3Department of Atmospheric Science, School of Environmental Studies, China 

University of Geoscience, Wuhan 430074, China 

4Climate Prediction Center, NCEP/NWS/NOAA, 5830 University Research Court, 

College Park, MD 20740, USA 

 

Aug 2019 

Revised to QJRMS 

 

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/qj.3697

http://orcid.org/0000-0001-9107-4969
http://dx.doi.org/10.1002/qj.3697
http://dx.doi.org/10.1002/qj.3697


• Corresponding author address: Hong-Li Ren, National Climate Center, China 

Meteorological Administration, 46 Zhongguancun Nandajie St., Haidian District, 

Beijing 100081, China. E-mail: renhl@cma.gov.cn 

 

This work was jointly supported by the National Key Research and Development 

Program on monitoring, Early Warning and Prevention of Major Natural Disaster 

(Grant No. 2018YFC1506004, 2017YFC1502302), and the Foundation for Innovative 

Research Groups of the National Natural Science Foundation of China (Grant No. 

41421004). 

 

Funding information 

This work is supported by National Key Research and Development Program of 

China (Grant No. 2018YFC1506004, 2017YFC1502302); National Natural Science 

Foundation of China (Grant No. 41421004). 

 

 

  

This article is protected by copyright. All rights reserved.

mailto:renhl@cma.gov.cn


ABSTRACT 

Seasonal predictability of the Primary East-Asian Summer Circulation Patterns 

(PEASCPs), including the Western Pacific Subtropical High (WPSH), South Asian 

High (SAH), anomalous Philippine Sea AntiCyclone (PSAC), and East Asian 

Summer Monsoon (EASM), are investigated by using the hindcasts from the three 

operational climate prediction models, including BCC_CSM1.1(m), NCEP CFSv2, 

and ECMWF System 4. We show that prediction skills of the indices for representing 

these PEASCPs are sensitive to the initial calendar month of model prediction, and 

the ensemble mean of the three models provides relatively higher and more stable 

skills than forecasts from individual model. In general, the indices of intensity and 

area have high prediction skills while the position indices have relatively low skills. 

Specifically, the skills of the WPSH intensity, area, SAH center intensity, PSAC and 

EASM are higher, while the skills of the WPSH western boundary and SAH center 

latitude are lower, and the skills of WPSH ridge line and SAH center longitude are the 

lowest. Further analysis shows that the El Niño-South Oscillation (ENSO) has a large 

contribution to these prediction skills and these patterns of atmospheric circulation 

anomalies in response to ENSO can be well captured by models, which is the major 

predictability source of the skills. 

Key words: Primary East-Asian summer circulation patterns (PEASCPs), prediction 
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skills, predictability source, El Niño and South Oscillation (ENSO). 

  

This article is protected by copyright. All rights reserved.



1. Introduction 

China is located in the East Asian monsoon region where the climate is complex 

and variable. Floods, droughts and other climate extremes caused by large scale 

circulation anomalies in East Asia and West Pacific Ocean often give rise to great 

losses of economy and people’s life. Climate anomalies in China are directly impacted 

by some Primary East-Asian Summer Circulation Patterns (PEASCPs), including the 

Western Pacific Subtropical High (WPSH), South Asian High (SAH), anomalous 

Philippine Sea AntiCyclone (PSAC) as well as East Asian Summer Monsoon (EASM) 

(Ding and Chan, 2005; Xue et al., 2015). From the climate perspective, predicting the 

PEASCP is of a great importance for rainfall and surface air temperature prediction 

and disaster prevention (Wang et al., 2009; Zhou and Zuo, 2010; Wang et al., 2015). 

The WPSH, SAH and PSAC are primary members of EASM system and are 

associated with the atmospheric circulation variation in East Asia. WPSH is a 

permanent anticyclonic circulation in Northwest Pacific, its variability is affected by 

El Niño-South Oscillation (ENSO), plays a vital role in the ENSO-EASM connection 

(Wang et al., 2000; Wu et al., 2003; Xie et al., 2009; Wu et al., 2009). For example, in 

El Niño year, positive anomalies of sea surface temperature (SST) in the central 

equatorial Pacific affect EASM, through generate anomalous anticyclones in the 

Philippines Sea area (Wang et al., 2000). PSAC is a large-scale anomalous 
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anticyclonic circulation over the western North Pacific and usually significant when 

El Niño happens. It can be regarded as the concrete physical manifestation of WPSH 

change and plays an important role of linking the climatic anomalies over East Asia 

and tropical Pacific. SAH is located over the Tibetan-Iran Plateau during summer time 

and it is the most powerful and stable anticyclonic circulation pattern in the global 

upper troposphere. The variations of its intensity and position have a close 

relationship with the onset and variability of the EASM system, as well as the 

meridional migration of the rain belt in eastern China (Zhang et al., 2000, Zhang and 

Wu, 2001; Qian et al., 2002; Ding and Wang, 2005; Liu et al., 2013; Wei et al., 2015). 

The evolutions of PEASCPs are quantitatively represented in the form of indices. 

For example, dozens of monsoon indices have been defined by using different 

atmosphere circulation variables, such as zonal and meridional wind at 200 hPa and 

850 hPa (Wu and Ni, 1997; Lu and Chan, 1999; Wang and Fan, 1999; Lau, 2000; 

Wang, 2001, 2002; Zhang et al., 2003), outgoing longwave radiation (Zhou et al., 

2003), equivalent potential temperature (Wang and Fan, 1999), land-sea thermal and 

dynamic contrast (Guo, 1983; Shi et al, 1996; Sun et al., 2002; Zhao and Zhou, 2009). 

There are also multiple indices to be used to measure the various aspects of WPSH, 

including the meridional and zonal location indices (Lu, 2002), intensity, area, 

longitude of western boundary, and latitude of ridge line indices (Liu et al., 2012; 
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Wang et al., 2013; Yang et al., 2017). For SAH, its intensity, area and position indices 

are normally defined with reference of specified geopotential height contour at 100 

hPa or 200 hPa (Zhang et al., 2000, Qian et al., 2002). Wei et al. (2015) also proposed 

an east-west shift index and north-south shift index to quantify the position changes of 

SAH. The definition of PSAC index is relatively simple that the area average of sea 

level pressure (SLP) anomalies over the Philippine Sea region is the most widely used 

index (Wang et al., 2000; Wang and Zhang, 2002). 

Since the atmospheric general circulation models forced by prescribed lower 

boundary conditions had shown reasonable skill in seasonal monsoon prediction for 

the past decades (Zeng et al., 1990, 1997; Shukla, 1998; Kang et al., 2002; Wang et al., 

2004; Zhou et al., 2009), they nevertheless exhibit noticeable shortcomings due to the 

lack of air–sea interaction, which is extremely important for the EASM system (e.g., 

Wang et al., 2005; Wu and Kirtman, 2005). Coupled ocean-atmosphere dynamical 

model prediction systems have gradually made great progress and can offer overall 

better performance, and have become the major tool of dynamical climate prediction 

in recent decades (Palmer et al., 2004; Kumar et al., 2005; Li et al., 2005; Wang et al., 

2005; Kug et al., 2008; National Research Council, 2010; Ma and Wang, 2014). For 

example, the majority of East Asian climate phenomena such as WPSH, EASM, and 

some SST modes like ENSO and Indian Ocean basin mode (IOBM) can be accurately 
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captured nearly half a year in advance at the Beijing Climate Center (Ren et al., 2017). 

In addition, multi-model ensemble (MME) has become a routine approach in climate 

prediction (Krishnamurti et al., 1999; Kharin et al., 2002; Palmer and Coauthors, 2004; 

Min et al., 2009; Weisheimer et al., 2009; Kirtman et al., 2014; Yang et al., 2016). 

One of advantages of MME is to reduce random errors in forecast caused by defaults 

of individual models and by uncertainty of initial conditions (ICs) of forecast (Zhu et 

al., 2013; Han et al., 2016). 

Based on the hindcast data from the three operational climate prediction models, 

including Beijing Climate Center Climate System Model version 1.1 with moderate 

resolution (BCC_CSM1.1(m)) (Wu et al., 2014), National Center for Environmental 

Prediction/Climate Forecast System version 2 (NCEP CFSv2) (Saha et al., 2014), and 

European Centre for Medium-range Weather Forecasts (ECMWF) System 4 (Molteni 

et al., 2011), this study focuses on examining performance of seasonal prediction of 

these PEASCPs and relevant attribution of their predictability source. Through this 

analysis, the model abilities in predicting the PEASCPs will be revealed. The paper is 

organized as follows. Models, data and method are introduced in section 2. Prediction 

skills of the PEASCPs are examined in section 3. Predictability source is investigated 

in section 4, and a summary with discussions is finally given in section 5. 

2. Models, data and method 
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2.1 Models and observational data 

The hindcasts for seasonal prediction used in this study are generated by three 

coupled ocean–atmosphere dynamical models, including BCC_CSM1.1(m), NCEP 

CFSv2, and ECMWF System 4. Information about prediction time, initialized date, 

and time period of each model data is illustrated in Table 1. Details for these three 

models can be found in http://forecast.bcccsm.ncc-cma.net/web/channel-63.htm, 

http://cfs.ncep.noaa.gov, and 

https://www.ecmwf.int/en/elibrary/11209-new-ecmwf-seasonal-forecast-system-syste

m-4, respectively. These three operational climate prediction models are used to 

conduct MME. In this study, for convenience of calculation, when the intensity and 

area indices are calculated, the horizontal resolution of data will be unified to 

2.5°×2.5° latitude/longitude, while for the position index calculation, the data are 

interpolated onto a 0.1°×0.1° latitude/longitude grid by using bilinear interpolation. 

Here, we only examine the prediction skill in boreal summer. There are total of 

26 boreal summers (1991–2016) which are available for all the three models. For 

prediction evaluations, observational PEASCP indices are calculated by using the 

NECP–Department of Energy (NCEP-DOE) reanalysis (R2) data (Kanamitsu et al., 

2002). The summer is referred to the average of June-July-August (JJA). 
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2.2 Indices and prediction skill evaluation method 

In this work, the prediction capacities of PEASCPs are evaluated based on a set 

of reconstructed indices which can objectively characterize the activities of PEASCPs 

and are convenient for calculation and suitable for climate prediction operation. Taken 

WPSH as an example, we should not only pay attention to the variation of its intensity 

and range, but also to the change of its position, which has an important influence on 

the location of rain belt and the extend of monsoon. Therefore the intensity, area, 

western boundary, and ridge line indices proposed by (Liu et al., 2012) are utilized to 

describe the WPSH. Also, to depict the changes in SAH strength and location, center 

intensity, latitude, and longitude indices will be applied (Zhang et al., 2000, Qian et al., 

2002). The PSAC index is defined as the area average of SLP anomalies over the 

Philippine Sea region according to Wang et al. (2000). Two EASM indices are used in 

this study: One is defined by Zhang et al. (2003) as the difference of 850 hPa zonal 

wind anomalies between tropical monsoon trough area in East Asia and subtropical 

East Asia (denoted as EASM-Z03), the other (denoted as EASM-H04) is defined 

based on the East Asia-Pacific (EAP) teleconnection pattern (Huang, 2004). Details of 

each index are shown in Table 2. In addition, PEASCPs possess a long-term trend due 

to climate variation. In climate prediction operation, we believe that trends should be 

part of the prediction that needs to be accurately estimated. Therefore, in this study, 
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the prediction skills are calculated without removing linear trends. 

The Temporal Correlation Coefficient (TCC) is used to measure the prediction 

skill. The calculation formula is given as: 

TCCi=
∑ �pi,j-pi�� �xj-x��N

j=1

�∑ �pi,j-pi��
2

N
j=1 �∑ �xj-x��

2N
j=1

 

where i denotes the initial month and j denotes the target year JJA. pi,j represents the 

predicted year j JJA mean index initialized on month i, pi�  represents the average of 

predicted JJA mean indices initialized on month i of each year. xj expresses the 

observational index in year j and x� expresses the average of xj. N=26 from 1991 to 

2016. 

Unlike TCC, the Pattern Correlation Coefficient (PCC) reflects the similarity of 

anomalous spatial patterns between the prediction and observation. The calculation 

formula is as follows: 

PCCj=
∑ ∆xi,j∆pi,j

M
i=1

�∑ ∆xi,j
2M

i=1 �∑ ∆pi,j
2M

j=1

 

where j denotes the target year JJA and i denotes the grid point. ∆pi,j and ∆xi,j 

represent the predicted and observational year j JJA mean value anomaly on grid i 

respectively. M is the total number of the grid points over the evaluated spatial region. 

3. Prediction Skills of the PEASCPs 
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3.1 Prediction of the WPSH 

To evaluate the prediction ability of WPSH, the model-predicted JJA mean 

WPSH indices are calculated using the model hindcast data. Then, TCCs between 

observed and predicted WPSH indices are calculated to represent the prediction skills. 

Considering that the NCEP CFSv2 seasonal forecast consists of 9-month predictions 

while the ECMWF System 4 only has 7-month predictions, JJA mean forecast only 

can be initiated from previous November by the NCEP CFSv2 and from February by 

the ECMWF System 4, respectively. 

Figure 1 shows the prediction skills for JJA mean WPSH intensity, area, western 

boundary, and ridge line indices as a function of initial calendar months. Overall, the 

BCC_CSM1.1(m), NCEP CFSv2, and ECMWF System 4 models all have high 

capabilities to predict the intensity, area and western boundary of WPSH. The TCC 

scores of intensity, area and western boundary indices exceed 0.6 and pass the 

significance test at 99% confidence level for the forecast initiated in November. TCC 

scores gradually increase with the initial month approaching JJA. However, the ridge 

line index is poorly predicted with most of TCC scores less than 0.2 in most initial 

months. Only for ECMWF System 4 model and the ensemble mean in June, their 

TCC scores exceed 0.4. It is suggested that the meridional position variation of 

WPSH is relatively difficult to predict accurately. 
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Comparing the prediction performances of WPSH indices by the three models, 

we can find that the capacity of BCC_CSM1.1(m) model is slightly better than the 

other two models, while the NCEP CFSv2 model is the weakest. However, the 

ensemble mean does not show a prominent advantage for increasing the skill but can 

provide more stable skills than forecasts from individual models. 

3.2 Prediction of the SAH 

The prediction skill of SAH is evaluated via examining the TCCs of SAH center 

intensity, center latitude, and center longitude indices as shown in Figure 2. Compared 

with the WPSH, the prediction skill of SAH is lower, especially for the position 

indices. For the intensity index, TCC score exceeds 0.6 for all forecasts initiated in 

November-June. Though TCC score in June is slightly higher than other months, 

prediction skill does not increase obviously with the initial month approaching JJA. 

The performance of BCC_CSM1.1(m) model is a little bit better than NCEP CFSv2 

and ECMWF System 4 models, and the ensemble mean can stabilize the TCC score 

nearly 0.7 for forecasts with IC since February. 

The capacity of SAH center latitude prediction is worse than the center intensity. 

The performance of ECMWF System 4 model is better than the other two, and the 

ensemble mean can stabilize the TCC score above 0.4 since February. It is worth 

noting that the maximum prediction skill of SAH center latitude by BCC_CSM1.1(m) 
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model is about 0.8 at the lead time of 0 month, initiated in June, but sharply decays to 

0.4 at the lead time of 1 month. Such a similar phenomenon can also be seen in the 

WPSH prediction that TCC sores of BCC_CSM1.1(m) model at lead 0 month is 

higher than NCEP CFSv2 and ECMWF System 4. It is probably related to the 

different time/day of ICs within a month used by each model. 

Models have a much lower capability to predict the SAH center longitude 

position. The model prediction skill is only significant for forecast with IC in June by 

BCC_CSM1.1(m) model and in April by ECMWF System 4 model, while there are 

almost no prediction skills for other initial months. Predications initialized before 

March, the TCC scores are even negative. 

3.3 Prediction of the PSAC 

The prediction skill of summer PSAC is shown in Figure 3. The TCC score 

decreases slowly as the lead time increasing. It is interesting to see that the TCC score 

of ECMWF System 4 model can reach 0.8 with ICs in May and June, and 

BCC_CSM1.1(m) model can exceed the 95% confidence level as the initial time up to 

November. That means that the models can provide a useful prediction for PSAC as 

initialized from prior autumn. 

3.4 Prediction of the EASM 

Figure 4 gives the TCC scores of the two EASM indices. Overall, the 
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EASM-Z03 index has higher prediction skills than the EASM-H04 index. In 

particular, the TCC score of EASM-Z03 index reaches about 0.7 at the initial month 

of June and declines slowly that remains higher than 0.5 at initial time of February. As 

a comparison, the EASM-H04 index shows lower skill with some fluctuations. For 

predictions initialized in December and January, the TCC scores of BCC_CSM1.1(m) 

model can exceed the 95% significance level. With ICs in February and June, NCEP 

CFSv2 model can provide useful predictions. Capacity of ECMWF System 4 model is 

relatively weak, but ensemble mean of these three models produces stable prediction 

skills initiating from February. It is worth mentioning that the calculation of 

EASM-H04 index only requires three grid points, which may cause some uncertainty. 

If a model simulation has some deviations in spatial pattern, it will bring biases in 

index grid selection. Thus, it may be a reason why the prediction skills of EASM-H04 

index show some fluctuations, especially in BCC_CSM1.1(m) model. In general, 

these results indicate that models are able to provide skillful predictions of the EASM, 

but the skill of prediction is dependent on the definitions of the EASM indices (Liu et 

al., 2015; Cheng et al. 2016). 

It can be summarized from the above analyses that intensity and area indices of 

these PEASCPs have higher prediction skills than the position indices. Except for the 

WPSH western boundary, most of the prediction skills of position indices are low. 
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4. Attributions of Predictability Sources 

In section 3 we have evaluated the prediction skill of PEASCPs, and found that 

most of the WPSH, SAH, PSAC, and EASM indices have high predictability in the 

models. To explore the sources of prediction skills in models, take the WPSH as an 

example, we put the observed and predicted time series of the WPSH intensity, area, 

and western boundary indices together to show the dispersion in different years, as 

shown in Figure 5. 

It can be seen that during the strong WPSH years, such as 1998, 2010 and 2016, 

the predicted intensity and area indices are highly consistent with the observations, 

especially in BCC_CSM1.1(m) and ECMWF System 4 models. The prediction bias of 

NCEP CFSv2 model is relatively large, but the ensemble mean can largely remove the 

forecast biases and improve the prediction. Although the prediction skill of western 

boundary index is lower than intensity and area indices, we can still find that the 

predictions are more consistent with observations during strong WPSH years than 

normal years, especially in ECMWF System 4 model. 

Not only the WPSH indices, the SAH center intensity, PSAC, and EASM-Z03 

indices are also well predicted in 1998, 2010 and 2016 summer, as shown in Figure 6. 

The predicted indices are highly similar with the observations no matter when the 

initial month is. Prediction biases of NCEP CFSv2 model seem relatively larger than 
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BCC_CSM1.1(m) and ECMWF System 4 models. Noting that the strong El Niño 

events occurred during 1997/98, 2009/10, and 2015/16 winters, we can infer that the 

WPSH, SAH, PSAC, EASM appear to be well predicted during years with strong 

ENSO forcing, suggesting the possible impact of ENSO on East Asian summer 

climate variability (Wu et al, 2003). 

Furthermore, to examine the impact of strong ENSO events on the prediction 

skill, we exclude the years of 1998, 2010 and 2016, and recalculate the TCC scores of 

WPSH intensity, area, western boundary, SAH center intensity, PSAC and 

EASM-Z03 indices, as shown in Figure 7. Compared with Figures 1 to 4, it can be 

seen that the TCC scores are obviously decreased in the forecasts without the three El 

Niño years. The averaged reductions of WPSH intensity and area indices are larger 

than 0.2 in each model, while the reduction of WPSH western boundary index is even 

more than 0.3. The skills of some other indices, such as the SAH center intensity and 

PSAC, also decrease visibly to different extents. These overall declines of the forecast 

skills by excluding the extreme large anomaly years imply that predictabilities are 

higher in years with large anomaly than with small anomaly, consisting with 

signal-noise consideration (Kumar and Hoerling 2000, Hu et al. 2019). 

To further examine the contribution of ENSO to prediction skills, we calculated 

the lead-lag correlation coefficients between the observed JJA-mean WPSH, SAH, 
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PSAC and EASM indices and monthly Niño3.4 index. The Niño3.4 index is obtained 

from National Oceanic and Atmospheric Administration/Climate Prediction Center 

(NOAA/CPC, https://www.cpc.ncep.noaa.gov/data/indices/). We can see that the 

indices having high prediction skills such as the WPSH intensity, area, SAH center 

intensity, PSAC and EASM-Z03 indices have large lag-correlations with Niño3.4 

index, which pass the significance at 99% confidence level (Figure 8). The highest 

correlation coefficients occur during former October to January, implying that the 

PEASCPs may be affected by ENSO. Nevertheless, some indices having low 

prediction skills, such as the WPSH ridge line, SAH center latitude, SAH center 

longitude and EASM-H04 indices, are poorly correlated with the Niño3.4 index. The 

WPSH western boundary index appears to be negatively correlated with the winter 

Niño3.4 index but does not pass the significance at 95% confidence level. Therefore, 

when strong ENSO events occur in observation during former winter, and if the 

models capture the high lag-correlation ship between PEASCPs and ENSO, the 

prediction of PEASCPs is largely reliable. 

Based on such assumption, we calculate the lead-lag correlation coefficients 

between the model-predicted JJA-mean WPSH, SAH, PSAC and EASM indices and 

the observed monthly Niño3.4 index, as shown in Figures 9 and 11. Taking the WPSH 

intensity index as an example, we can see that the model-predicted indices have high 
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lag-correlations with the observed Niño3.4 index. No matter which month the 

prediction initiated, the correlation coefficients always achieve above 0.7 in former 

winter and pass the significance at 99% confidence level. This lag-correlation pattern 

is captured by all the three models, but still have some differences. In the 

BCC_CSM1.1(m) and NCEP CFSv2 models, correlation coefficients assume quite 

dissimilar by different initial months and that may correspond to the distinct 

prediction skills from former November to June. But in the ECMWF System 4 model, 

correlation coefficients represent almost the same and result in stable prediction skills 

initialized from February to June. As expected, the lag-correlation coefficients of 

ensemble mean show virtually identical for different initial months. Result is similar 

for other indices with high prediction skills such as the WPSH area, WPSH western 

boundary. 

To further understand the contributions of ENSO to the high prediction skill for 

WPSH, we also show the spatial pattern of the skills of H500 for ensemble mean for 

initial months in Feb to Jun, and then compare it with lag correlation of DJF Niño 3.4 

index on predicted JJA H500, as shown in Figure 10. It is clear that in the Western 

Pacific, regions with high prediction skills also have significant high correlation ship 

with ENSO. Other regions such as the North Pacific, North India Ocean, and some 

parts of Eurasia, prediction skills of H500 is lower, and the correlation between these 
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areas and ENSO is similarly not very high. This may be evidence that ENSO is a 

major source of high prediction skills of circulation patterns (like WPSH) in the 

Northwest Pacific region. 

The results of SAH, PSAC, and EASM indices are shown in Figure 11. Although 

the correlation between the SAH center latitude index and the Niño3.4 index is not 

high, the BCC_CSM1.1(m) and ECMWF System 4 models still well capture the lag 

correlation pattern. But the NCEP CFSv2 model doesn’t reproduce this correlation 

pattern and that may be why the prediction skills are lower than other models. 

In observations, the EASM-H04 index is poorly correlated with the Niño3.4 

index, but this correlation is overstated by BCC_CSM1.1(m) and ECMWF System 4 

models, which may lead to the prediction skills of BCC_CSM1.1(m) and ECMWF 

System 4 models lower than NCEP CFSv2 in most initial months. Other poorly 

predicted indices such as the WPSH ridge line and SAH center longitude indices don’t 

have the significant correlation with ENSO in observation. Therefore, the correlations 

in models do not have much reference. 

ENSO events are the most important predictability source of seasonal prediction 

in East Asia (Wu et al., 2003; Wang et al., 2009). Since the TCC skills of 

BCC_CSM1.1(m), NCEP CFSv2 and ECMWF System 4 models for Niño3.4 index 

are all larger than 0.7 at 6 months lead (Ren et al., 2017, Saha et al., 2014, Molteni et 
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al., 2011), the capacities of models to predict PEASCP indices may rely onto the 

relationship between the prediction performance of circulation field and ENSO. 

Scatter plots of PCC skills for models initiated in May against the absolute value of 

former winter-(December, January and February, DJF)-mean Niño3.4 index is shown 

in Figure 12. We can see that there is some positive correlation between the prediction 

skills of models and the amplitude of Niño3.4 index, particularly seen in geopotential 

height at 200 hPa over South Asia and 500 hPa over Western Pacific (Significant 

correlation coefficients at 90% and 95% confidence levels are about 0.32 and 0.38, 

respectively). When the amplitude of Niño3.4 index is larger, the PCC scores of 

models are generally higher. Although the correlation of zonal wind at 200 hPa over 

South Asia is relatively small, but ensemble mean still reaches 90% confidence level. 

Besides, zonal wind at 850 hPa over Southeast Asia also shows positive correlation. 

Accordingly, at the time of the ENSO events (whether El Niño or La Niña), the 

prediction skills of models will be remarkably improved. It is possible to draw a 

conclusion that ENSO is the most important predictability source of models to predict 

circulation patterns in East Asia. The enhancement of circulation pattern prediction 

skills mainly stems from the high prediction skills of ENSO. 

However, although there are some linear relationships between ENSO intensity 

and prediction skills (Figure 12), the spread is extremely large. That may imply that 
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other processes, such as land surface, stratosphere, internal dynamical processes 

(National Research Council, 2010), and some other tropical air-sea interactions may 

play important role in summer climate variability in East Asia, which are relatively 

independent to ENSO. For example, Watanabe and Jin (2002) demonstrated that the 

Indian Ocean warming and the Tibetan Plateau essentially contribute to the 

development of PSAC. More recently, a mechanism based on seasonally-dependent, 

moist, static-energy advection has been proposed in an effort to interpret the onset of 

the PSAC and its eastward movement from South Asia (Chou, 2004). Therefore, the 

spread shown in Figure 12 may be a consequence of the common primary feature of 

climate variability over the mid-high latitude lands, and even in the mid-high latitude 

oceans (Davis, 1976; Hu et al., 2011; 2017), which are dominated by atmospheric 

internal variability and minor constrained by external and/or remote forcings, such as 

SST (Kosaka et al., 2012; He et al., 2016). In fact, model defaults and errors in ICs (or 

reanalyses) may also affect the prediction skill at some extent (Kumar and Hu, 2012; 

Zhu et al., 2013; Liang et al., 2018). 

5. Summary and discussions 

This study has examined the seasonal predictability of the PEASCPs such as the 

WPSH, SAH, PSAC and EASM by using 26-year (1991-2016) hindcasts of the three 

operational climate prediction models, viz., BCC_CSM1.1(m), ECMWF System 4 
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and NCEP CFSv2. In addition, we also have analyzed the connection of model 

prediction skills with ENSO influence. Our findings can be summarized as follows: 

Prediction skills are sensitive to the initial time of models, and the ensemble 

mean can provide relatively higher and more stable skills. The indices representing 

intensity and area have high predictability in models, but the predictability of position 

indices is relatively low. Specifically, skills of the WPSH intensity, area, SAH center 

intensity, PSAC and EASM are higher, while the WPSH western boundary and SAH 

center latitude are lower, and skills of the WPSH ridge line and SAH center longitude 

are the lowest. ENSO signal is the dominant source of predictability for these 

PEASCPs. Prediction skills are connected with ENSO. If strong ENSO events occur 

in observation during former winter and the models can capture the high 

lag-correlation between PEASCP and ENSO, the model predictions are quite reliable. 

In general, models have reliable prediction skills for the PEASCPs, but there are 

still some problems to be solved. For example, capacities of models to predict the 

position variations of WPSH ridge line and SAH center longitude are still poor that is 

more crucial than the intensity and area in affecting the rain belt location and EASM 

onset (Chang et al., 1999, Liu et al., 2013, Wei et al., 2015). 

In addition, on the basis of existing model prediction, statistical-dynamical 

method, such as analogue-based correction (Ren et al., 2014; Liu and Ren, 2015, 2017) 
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can be used for improving the prediction results and enhancing the prediction skills. 

Yang et al. (2016) also pointed out that MME can significantly improve the prediction 

ability of models. Therefore, statistical-dynamical method on the base of MME may 

be an important direction of future seasonal prediction operation. 
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FIGURE 1 TCC skills of JJA mean WPSH intensity (a), area (b), western boundary 

(c), and ridge line (d) indices predicted by BCC_CSM1.1(m) (orange), NCEP CFSv2 

(green), ECMWF System 4 (blue) models and the ensemble mean (red) of these three 

models as a function of initial calendar months. The dashed blue (red) line denotes the 

statistical significance at 95% (99%) confidence level based on the Student’s t-test. 
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FIGURE 2 As in Figure 1, but for the SAH center intensity (a), center latitude (b), 

and center longitude (c) indices. 
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FIGURE 3 As in Figure 1, but for the PSAC index. 
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FIGURE 4 As in Figure 1, but for the EASM-Z03 (a), and EASM-H04 (b) indices. 
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FIGURE 5 Time series of the JJA mean WPSH intensity (a, d, g, j), area (b, e, h, k), 

and western boundary (c, f, i, l) indices from the observation (thick black line) and 

model predictions (thin colored lines, for different initial months) for the period from 

1991 to 2016. (a, b, c) BCC_CSM1.1(m), (d, e, f) NCEP CFSv2, (g, h, i) ECMWF 

System 4, and (j, k, l) ensemble mean. 
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FIGURE 6 Time series of the JJA SAH center intensity (a, d, g, j), PSAC (b, e, h, k), 

and EASM-Z03 (c, f, i, l) indices from the observation (thick black line) and model 

predictions (thin colored lines, for different initial months) for the period from 1991 to 

2016. (a, b, c) BCC_CSM1.1(m), (d, e, f) NCEP CFSv2, (g, h, i) ECMWF System 4, 

and (j, k, l) ensemble mean. 
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FIGURE 7 TCC skills of JJA mean WPSH intensity (a), WPSH area (b), WPSH 

western boundary (c), SAH center intensity (d), PSAC (e), and EASM-Z03 (f) indices 

predicted by BCC_CSM1.1(m) (orange), NCEP CFSv2 (green), ECMWF System 4 

(blue) models and the ensemble mean (red) of these three models as a function of 

initial calendar months, eliminating the years of 1998, 2010 and 2016. The dashed 

blue (red) line denotes the statistical significance at 95% (99%) confidence level 

based on the Student’s t-test. 
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FIGURE 8 Lead-lag correlations between observed JJA mean circulation pattern 

indices and observed monthly Niño3.4 index. Colors are for different circulation 

pattern indices. Dashed blue (red) line denotes the statistical significance at 95% 

(99%) confidence level based on the Student’s t-test. 
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FIGURE 9 Lead-lag correlations between predicted JJA mean WPSH intensity (a, b, 

c, d), area (e, f, g, h), western boundary (i, j, k, l) and ridge line (m, n, o, p) indices 

and observed monthly Niño3.4 index, where (a, e, i, m), (b, f, j, n), (c, g, k, o), (d, h, l, 

p) are for BCC_CSM1.1(m), NCEP CFSv2, ECMWF System 4 models and ensemble 

mean, respectively. Colors are for different initial months. Dashed blue (red) line 

denotes the statistical significance at 95% (99%) confidence level based on the 

Student’s t-test. 
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FIGURE 10 (Left panel) Spatial pattern of the TCC skills of JJA H500 for ensemble 

mean for ICs in Feb-Jun. (Right panel) Lag correlation coefficients of observed DJF 

Niño3.4 index on JJA H500 for ensemble mean for ICs in Feb-Jun. Black dots denote 

the statistical significance at 95% confidence level based on the Student’s t-test. 
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FIGURE 11 Lead-lag correlations between predicted JJA mean SAH center intensity 

(a, b, c, d), latitude (e, f, g, h), longitude (i, j, k, l), PSAC (m, n, o, p), EASM-Z03 (q, r, 

s, t) and EASM-H04 (u, v, w, x) indices and observed monthly Niño3.4 index, where 

(a, e, i, m, q, u), (b, f, j, n, r, v), (c, g, k, o, s, w), (d, h, l, p, t, x) are for 

BCC_CSM1.1(m), NCEP CFSv2, ECMWF System 4 models and ensemble mean, 

respectively. Colors are for different initial months. Dashed blue (red) line denotes the 

statistical significance at 95% (99%) confidence level based on the Student’s t-test. 
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 1 

FIGURE 12 Scatter plots and linear regression lines of PCC skills for 2 

BCC_CSM1.1(m) (orange), NCEP CFSv2 (green), ECMWF System 4 (blue) models 3 

and the ensemble mean (red) initiated in May against the absolute value of former 4 

winter-(December, January and February)-mean Niño3.4 index: (a) geopotential 5 

height at 200 hPa over the South Asia region [10°–50°N, 30°–120°E], (b) 6 

geopotential height at 500 hPa over the Western Pacific region [10°–40°N, 90°–7 

180°E], (c) u-wind at 200 hPa over the South Asia region [10°–50°N, 30°–120°E], 8 

and (d) u-wind at 850 hPa over the Southeast Asia region [10°–20°N, 90°–120°E]. 9 
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Table 1 Information of models adopted in this study 

model prediction time initialized date time period 
BCC_CSM1.1(m) 12 months 15th of each month 1991 to present 

NCEP CFSv2 9 months 18th of each month 1982 to present 
ECMWF System 4 7 months 10th of each month 1981 to present 
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Table 2 Definitions of PEASCP indices applied in this study 

PEASCP index definition illustration 
WPSH area WPSHarea=∑ A(i)i  (gh(i)≥588dagpm) A(i) and gh(i) denote 

the area and 
geopotential height 
of grid i at 500 hPa 
isobaric level, 
respectively. Each 
index is calculated in 
the region of 10°–
90°N, 110°E–180°. 
(Liu et al., 2012) 

intensity WPSHint=�A(i)*(gh(i)– 587dagpm)
i

 

(gh(i)≥588dagpm) 
western 
boundary 

The longitude of the westernmost grid at 588 
dagpm contour line. If the longitude locates at 
the west of 90°E, the western boundary index 
will be uniformly recorded as 90°E. 

ridge line The averaged 0 line of ∂gh ∂y⁄  in the area of 
[10°–45°N, 110°–150°E]. 

SAH center 
latitude 

The latitude of maximum geopotential height 
position from the contour line where the u-wind 
equals 0 around [10°–55°N, 35°–115°E] at 200 
hPa isobaric level. 

Here we only 
consider the 
maximum value 
center of the SAH if 
there exits 
bimodality. 
(Zhang et al., 2000, 
2002; Qian et al., 
2002) 

center 
longitude 

The longitude of maximum geopotential height 
position from the contour line where the u-wind 
equals 0 around [10°–55°N, 35°–115°E] at 200 
hPa isobaric level. 

center 
intensity 

The geopotential height value (minus 1600 
dagpm) of the center. 

PSAC intensity The area average of SLP anomalies over the 
Philippine Sea region [10°–20°N, 120°–150°E]. 

Wang et al. (2000, 
2002) 

EASM intensity The difference of 850 hPa zonal wind anomalies 
between tropical monsoon trough area in East 
Asia [10°–20°N, 100°–150°E] and subtropical 
East Asia area [25°–35°N, 100°–150°E] (denoted 
as EASM–Z03). 

Zhang et al. (2003) 

intensity Based on the EAP teleconnection pattern 
(denoted as EASM–H04): EASM-H04=–
0.25Z’(60°N,125°E)+0.5Z’(40°N,125°E)–
0.25Z’(20°N,125°E). 

Z’=Z*sin45/sinφ is 
the standardized 
seasonal mean 500 
hPa geopotential 
height anomaly at a 
grid point with the 
latitude φ. 
(Huang, 2004) 
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